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ON A MODIFICATION OF THE AVERAGING METHOD
AND ESTIMATES OF HIGHER APPROXIMATIONS
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The asymptotic method of multiscale expansions (see [1, 2 ] for ordinary diff-
erential equations is expounded and substantiated, It is shown that the meth-
ods of multiscale expansions and of averaging [3] yield equivalent results in
any approximation, The findings about convergence in finite time intervals
obtained in {4, 5] are generalized. It is shown that the time interval in which
the error of an expansion remains small substantially depends on the proper-
ties and stability of the approximate solution,

The methods of Bogoliubov and Mitropolskii are well substantiated in {3 =5 ]
and the order of closeness between the exact solution and its first [3] and higher [4,5 ]
approximations is established, Construction of higher approximations is, as a rule,very
laborious, The method of multiscale expansions based on qualitative concepts of motion
properties of systems makes it, on the other hand, possible to obtain a higher approx-
imation without having to resort to cumbersome calculations., Furthermore, it gives a
clearer picture of the physical essence of motion by separating " quick-acting” and
"slow” effects that occur in various intervals of time, It was proved on specific ex-
amples that solutions derived by the method of multiscale expansions and those obtain-
ed by the method of averaging coincide in every approximation, but this has not been
proved for the general case and any number of approximations, Below we show that
solutions obtained by both these methods are completely equivalent, and that the the-
orems on the existence and convergence of asymptotic expansions that are valid in the
method of averaging are, also, applicable in the method of multiscale expansions,

1, Let £ bean n-dimensional real space and O  a bounded region in it,
We consider the equation in its standard form

dy/dt=eY,(t,y) +eY, (&, Y + ... +&Y (6 y) + (LD
Y (b y,8) 0Lt T, y= D

Operators Y ; (i == 0, . . ., k) are continuous with respect to y and have &k — §
derivatives in ) with respect to £ and & which are measurable,
We propose to seek for that equation a solution of the form

Y="Folt, T, Tgy ...} F&F {6, T, Tos oo . ) + oo -+ (L2)
e¥ Fp (¢, Ty, Tay o+ -)

where Ty == &f, ..., T, == &™ ¢ are slow variables which define motions that
take place at various velocities, The different rate of change of variables is taken
into account in the differentation
dy _ Ofg [Ofu 3F, g2 ( 3fq aF, B 01:1’) (L3)
=t ta) T e Ton v ) T
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For an unambiguous determination of expansion coefficients they are subjected to the
condition of expansion homogeneity

15304 £y
T T
The fulfilment of that condition ensures the closeness of solution to the generating
solution in the related time interval [2].
The substitution of (1. 2) and (1. 3) into (1.1) and the equating of coefficients
at like powers of ¢ yields a system for the successive determination of operators
for Fio oo ) Fr
The zero approximation equation 4df, / dt = implies that fo does
not explicitly depend on ¢ and is a function of slow var1ab1es fo ="Ffo (T1sTqy - . )
This function is so far unknown and is to be determined by higher approximation equ-
ations with allowance for condition (1.4), For F,, ... Fy wehave

for 0Ct<Coo, =0 (i-=1,..., (L.4)

0F 0

(()/] = Yy (t, fo) _Tj} (L.5)
aF, Y, OF,  0fy _ s

> = =Y, (¢ fo) + —(‘TFl—-o'rl-———aTz = Dy (¢, fo) a1,

oF a/f

Dy (1 fo) —

odt Ty

D, (¢, fo) = L P — Z m—rr+1 (1.6)

=1

Operators P;; are determined by the expansions

E—i
Yot fo A 8F1 oo 4 €5 F) = 2 Pig’ + Pi(e)eFH (1.7)
i=0

It follows from the first equation of system (1, 5) that for condition (1.4) to
be satisfied it is necessary to eliminate from the equality

t
. ()j(,
= \ YO fﬁ) ds — 817
;
terms that are linear to ¢ by setting
T

thmum,GAM—hm—&YMM)wx?md

JdTy

(1.8)

Thus
¢

Fot, T, .. ) = S (Yo (fo, ) — Do (fo)lds = Fi(t, fo(Tr,-.)  (1.9)
0

By excluding from all subsequent approximations all secular terms we obtain
T

o — Dy (fo), By (fo) = lim - | Yo (for 5)ds = ¥ (fo)

(1.10)

(1,11)
Fi(t, 1y, o) = Fy(ly fo(th, »—qu , fo) — Wiy (fo)l d

0
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Taking into account that T3, Ty, . . ., Ty  are dependent variables, we
write the equations for determining f, as
df Ao . of = T (1. 12)
dlo = 87'1 + ~'+8h'ﬁ: eWq(fo) + . - - — "Dy (fo)

Higher terms of expansion are determined by equalities (1.11) in which functicn fo
is already known from the solution of Eq. (1,12),

Equation (1. 12) and formulas (1, 11) determine f, and F; to within terms
of order e*, The explicit introduction of slow variablesdiscloses the physical ess~
ence of solution, namely, that Eqs, (1, 10) define slow processes that are significant
only in the time intervals ¢ ~ T / e't!, and that by retaining in expansion (1.2)

L + 1 terms, we take into account not only the minor but, also, the slow effects
that appear in the time intervals ¢ ~ 7'/ gk,

If o istaken as the new variable which defines operators F; by form =~
ulas (1.11), then, by substituting (1.2) and (1. 3) into Eq. (1.1) and taking into acc-
ount formulas (1.6) and (1,12) we find that f, satisfies the exact equation

o dt = o0y (fo) + ... + €Dy (fo) + HD, (8, o) + (119
€ R (t7 va 8)
where lim R (¢, ), e) = 0 when ¢ — Q. If, however, /, is determined by the
averaged equation (1,12), we are faced with the error of the expansion whose estimate
is given below in Sect, 2.

Let us show that the principal term of expansion of fo and the higher app-
roximations expressed as functions of it are exactly the same as the coefficients of as-
ymptotic expansion obtained by the method of averaging.

In the method of averaging the solution of Eq, (1.1) is sought in the form of
expansion [ 3-5] . (1. 14)

y=z 4+ el (t,2) +... + U, (¢, ) ’

where the principal term of expansion x is taken as the new variable. Following the
basic assumptions and reasoning in [5] and substituting (1. 14) we pass from (1. 1) to
the autonomous equation
dz/dt = eX, (2) + Xy (2) + ... 4 &X, (2) + (115)
8h+ka (t7 x, 8)
accurate to within terms of order gh+1,
Operators X; (x), andU,;,, (, z)are successively determined by formulas

[4,5] X . . 1 (1.16)
i(x) = Tl_{; —T—§ Y (s, 2)ds
t
Uin (t, 2) = {[¥: (s, 2) — X, (@) ds
where 0
oU,, 1.17)
sy (t7 I) = 2 leij - Z Qa—m (‘“+1 (a=0,...,k) (
itgl=a rsm<a—1
au - ad (1.18)
Q= — s <[ ouU U1 ;
H-;:l Ox Q» I+8—0171-+...+8k dx} :Zg()i>
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Operators P;; satisfy formulas (1.7), Operator X (¢, %, €) is determined by
formula
X, (¢ x, &) =¥ (¢, 2) + L (2 ¢), Iiml,(txe)—

where L (£, z, &) is the remainder formed by the substitution into the input equation
(1.1) of expansion (1. 14) in which .z (¢) is determined by the averaged equation

de/dt = eXg(r) ... "X, (2) + 3]"+’Xk (z) (1.19)
( ] .
X, () = hm - g Xyt 2, 0) dt>
e 0

and operators X; and U, are specified by formulas (1.16). The formula for oper-
ator [, is given in [3-3],

Comparison of formulas (1,10) - (1. 13) with (1. 14) - (1. 18) shows that sol-
utions derived by either method are the same, if the quantities (; and ¥, deter-
mined, respectively, by formulas (1,6) and (1. 17) are the same,

In fact, if 2%+l and f(k+1') are, respectively, the solutions of Egs, (1.19)
and (1.12) and @; = ¥;, with 0 < i < m — 1, then

”(m) m m

¢ .
= YL ) = Y e ()

T=1 i1
ine, foim = xo(mﬁ, and, consequently,

(1.20)
Fi = Ui? l<é<n1

We apply the method of mathematical induction for; = Owhen @, =¥,=Y,.
We shall prove that when

oF
Wy = Wy - Z 0,P;; — E Orecr 1 r+1 (1.21)

il l=m—1 or<<m—2
where in accordance with (1. 18) and (1.20)

or (1.22)
s .
0= — Z'_(')']T(\)py o0Igm
s+p=1
then
. % or
‘l)m = moT L (\)l[)ij - (\)m T (;;H (1.23)
id-j4-1=m or<{m—1

Let us, first, calculate the second sum in (1, 6).
By virtue of (1.5) and (1, 21)

m e . m

Sj ol m—-r+1 v ')];H"——N 1 0/0 . (’)Fm~r+1 i) (U’r __
o, T dj, ot ETH T
=1 r=1
It -
Z g 51 QP v 0 O - o,
e 2 1 o [l T a |

r==1 i4j il =r—1 0L —2
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and, with allowance for (1, 22)

—r+1 .
§ Y Teon-- ¥ o
r.—1 idgjH=r—1 5+‘i'§i:m

(1.24)

Because (), = 1 we can write

WEP”JV Z QsPij = Z QsPij (1.25)

=0 s+is-¥>;jl=m 81—;};9
and exactly in the same way
m (1.26)
oF , F or
__m-ri1 q+1
Z T ofe [QT—I- + 0;] = Z Qmq q+1
r=1 0Lo<r—2 IKgsm—1

The substitution of (1,24 )~ (1,26 ) into (1, 6) shows that (1. 6) coincides with (1.23),
This proves that expansions (1. 2) and (1, 14) are equivalent, i,e. f, = Z and

Fi(t71717"')=Fi(t7f0(1717'-'))=U'i(tvx)‘

The conditions under which operators U; or (what is the same) F;, can be
successively determined were defined in [3-5], In particular, if all operators
Y;(i=0, k) together with derivatives of upto & — i order are bounded
in D if operators U, are bounded, and if there exists averaging of operator ¥,
condition (Py)), then operators U; can be successively determined by formulas (1. 16),

2, It follows from the analysis in Sect, 1 that, when determining the k& - 1 terms

of expansion, we retain the quantities that are important in the time intervalg ~ 7 / gk
Simultaneously the method of averaging and that of multiscale expansions

conform to the theorem [3-5] which states that with specific constraints on coefficients

of the equation for any (finite) 7' the following inequality is satisfied.

lim  sup max (e7||z(t)—2z(¢)[)=0 (2.1)
e—0 xEM(e, The) 0<t<T e
T = Mk <8, %)

where M (e, T) is the set of all solutions of Eq, (1.15) determinate in[0, I']and
M, (g, T) is the set of all asymptotic approximation of the k -+ 1 order to solution
z (f).  Of interest is the behavior of solution in the time interval ¢ ~ T / &,
since it makes sense to retain only those terms that are important within the conver-
gence range.
Let us again consider Eq. (1. 1) whose solution is sought in the form (1, 14),
The principal term of expansion = satisfies the exact equation

dz / dt = eX, (z) + X, (2) + ... + e Xy (¢, z, e) (2.2)

With the use of asymptotic methods it is possible to obtain the approximate solution
y=2z +eU,(t,2) + ... + U, (8, 1) (2.3)

in which the principal term of expansion z satisfies the averaged equation (2.4)
2.4
dz [ dt = eX, (@) + X, (1) + ... + 41X, (@) = eZ (e, 2)
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T o

T
(Xk (2) = lim - S Xy (o, 0) dt> (2.4)
0

We have to determine the quantity | ¥ — ¥ ||Forthis we determinel 7 —.z |
between the solution of the exact equation (2, 2) and the averaged equation (2.4),
Let us, first, assume that Eq. (2.4 ) has a quasi-static, i, e, independent of

time, solution .. == £. The equation of perturbed motion for & = E can be written
in the form
dh | dt = elZ (& 4k, &) — Z (§, &)l = e [A ()b + F (e, k)] (2.5)
19Z (z, ¢) N P CAOY
A &) = ————o0 . [tm Y 0
®) 0T g Wll”—j) (g

Let among the eigenvalues A, (A) of matrix A (¢) = Ay + 84y + .. + e" Ay
there be at least one lying in the right-hand half-plane, and

T 2.6
0 < max Re A, (A) <v, v<e"a, +...+ efa, v m<l /,-( )

It is then possible to use the estimate [6 ]
et | < Ne

We introduce in the analysis the quantity u = (z — £) / €" substitute the
new variable T = &f for ; . and write the equation for u as

(2.7)

%%”:'%F[Z(E-FB“U~8)——Z(E,en»+ (2.8)
¢ £
[Xk <% , &4 ghu, e> — X, (- gku)-

We rewrite (2, 8) after separating the linear with respect to u. part
du/dv = A (&)u — 1/ebF (efu, &) + V (t/e. u, €) (2.9)
Vt/e u e =X, (/e & F eu, &) — X, (B 4 e'u)
where A (e) and F (e'u, ¢) are quantities defined in (2.5).
Theorem 1, Let Eq. (2.4) have a quasi-static solution that satisfies con -
ditions (2.5) - (2.7), and let, furthermore, X, (T /€, €, ) converge as a whole
to Xy (2), i.e. [6]

To+7T
: - v (2.10)
51_)[;1 5 [Xk<—%—, g, a:>—Xk(xﬂ do
Then
lim  sup max (e7 (1) —-E) = 0 (2.11)

2 xeM(e, T/eMtl) ot TN

B My(e, T/em

Proof. We rewrite (2.9) in the form of the integral equationt (t) = /,

(4, T, &) -+ I, (u, 7, &) where .

11 (u, t’ 8) = 8““’ Se‘i(aj(:_o‘) [(‘ (Sku, 8) dO’
1)

T

Io(u, 1, 8) == Sg"'\i/(’:—U)[,’ <; U, s) do
&

vl
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and estimate these integrals,
Because F (g, h) contains /£ in a higher power than the first, it is possible

to choose the neighborhood | u | <C p, such that

ek | Feu, o) <gllul, ¢g<v/N

We can then write .

1, %, €) <N § =0 u (0) [ do < v -9 | u(0) | do

Py
V]

(2.12)

To estimate the second term we integrate by parts, and obtain (2.18)
- .13

Iy (u, 7, 8) = \eA®C-0doJ (u, 0,8) = J (u, T, €) +
1)

A (G)SeA(E)(““)J (1, 0, g)do, J(u. T, 8) = XV (ﬁa— u, a) ds

0
Because of condition (2.10) lim J (u, 0, €) = 0 when ¢ — 0. However,
according to theorem on limited convergence the transition to limit in (2, 13) is only
possible in the region where the quantity | eA® -2 || is limited, i.e. when
0<T< T /v (see[7]. Then (2.14)
I, (u, 7, &) < (&)

and lim v (¢) = 0 whene — Quniformly with respect tou &= Dandt < [0, T / v].
Using (2. 12) and (2, 14) we obtain the integral inequality
T
Ju @ <v)e™ [u(©)|do+ )
Q
from which we have [6]

le@ <)@ +e), Ju@|—>0 mpn oLt T

where v is of the form (2.6). The validity of formula (2, 11) follows immediately
from this,

For simplicity it was assumed that £ is a quasi-static solution of Eq. (2.4).
However the proof remains valid for any solution z = z (¢, ¢) for which the Cauchy
matrix of the variational equation

dh | dt = A (¢, e)h (2.15)
satisfies the relationship (2.16)
| H (¢, 5) | < Vet

and the expansion of the index v begins from quantities of order ¢™ (see (2.6). It
is thus possible to assert the validity of the following theorem

Theorem 2, If Eq, (2.4) has the solution 3 = Z (¢, &) which satisfies
conditions (2, 15) and (2, 16), then

lim Sup max B—k x(t Z(t _ O
— = 2.17
0 st e, o<t<mm+1( =) —z()) (2.17)

T
E(t)EMk<8, 'am—+1—>
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Let us estimate in conformity with [3] the quantity |y — § ||, where y is
the exact solution of Eq, (1, 1) defined by formula (1,11)and j is its asymptotic
approximation of the form (2. 3),

Formulas (1, 16 ) imply that when conditions (Pj) are satisfied, the relation-
ships | U, (t, z) ||, | 0U; (t, x) / 9t || < (), in which function  (¢) is bounded
in every finite interval and Jim ¢ (¢)=0 when ¢— oo, are valid.

Moreover the statement

feUs(t2) 4+ .o U (4 2) | < Rep () O I<e)
is valid [3], i.e.
| eUy (b ) + o e Uk (6 2) [ < ele) O<ISTR™Y (2,18)

and in the same way

2L : U . 2,19
le d‘{l _]L U gt a,h H <e (8) <t <Tfem+l) { )

and lim ¢ (g) = O when ¢ — 0.
Region D is called regular [3], if there exists a constant ¢ such that any
two points &, y ¢= D can be connected by a straightened curve which is shorter than

clx—yl.  Thus, when conditions (P,) are satisfied and region [) is regular,
from (2, 18) and (2, 19) and from the definition of a regular region, follows that
ly— g1 =1(@—2) + el (t,2) + ... + e Uy (t,2) —

eUp (o) — ... — U Gl <z — | (1 -+ d)
(lim de)=0 apu e—0, v, 2= D, 0Lt %)
Since the quantity || r — z| satisfies condition {2, 17), we can write

lim sup max (e y(@)--g(@)]) ="
0 yheN(E, TN gt TeM 1 ‘

_ T
0= Nk(e, —r )

where N (e, T) is the set of all solutions of Eq, (1.1) determined in [0, 7'l which
satisfy the initial condition y (0) = y,, and Ny (s, T) is the set of all asymp-
totic approximations of the % - 1- st approximation of solution ¥ ().

It can be shown that the proof of the averaging method for infinite time interval
[3]is also based on Theorems 1 and 2, For this it is sufficient to repeat the proof by
setting v <7 0 in(2.6) and (2, 18),
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